Prediction of Lithofacies Types and Qualities Using a Distributed Neural Network
نویسندگان
چکیده
A distributed neural network, running on a large transputer-based parallel computer, was trained to identify the presence of the main lithographical facies types in a particular oil well, using only the readings obtained by a log probe. The resulting trained network was then used to analyse a variety of other wells, and showed only a small decrease in accuracy of identiication. Geologists classify well structures using rock and fossil samples in addition to the log data that was given to the network. Results are given here for the accuracy with which the learned network agreed with analyses performed by geologists. The study was then extended into two more areas, rstly to investigate the network's success in predicting physical attributes of the rocks, e.g. porosity and permeability, and secondly to investigate the ability of similar networks to isolate particular geological features.
منابع مشابه
Application of artificial neural networks for the prediction of carbonate lithofacies, based on well log data, Sarvak Formation, Marun oil field, SW Iran
Lithofacies identification can provide qualitative information about rocks. It can also explain rock textures which are importantcomponents for hydrocarbon reservoir description Sarvak Formation is an important reservoir which is being studied in the Marun oilfield, in the Dezful embayment (Zagros basin). This study establishes quantitative relationships between digital well logs data androutin...
متن کاملTraffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization
Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...
متن کاملOnline Composition Prediction of a Debutanizer Column Using Artificial Neural Network
The current method for composition measurement of an industrial distillation column includes an offline method, which is slow, tedious and could lead to inaccurate results. Among advantages of using online composition designed are to overcome the long time delay introduced by laboratory sampling and provide better estimation, which is suitable for online monitoring purposes. This paper pres...
متن کاملArtificial Intelligence for prediction of porosity from Seismic Attributes: Case study in the Persian Gulf
Porosity is one of the key parameters associated with oil reservoirs. Determination of this petrophysical parameter is an essential step in reservoir characterization. Among different linear and nonlinear prediction tools such as multi-regression and polynomial curve fitting, artificial neural network has gained the attention of researchers over the past years. In the present study, two-dimensi...
متن کاملPREDICTION OF NONLINEAR TIME HISTORY DEFLECTION OF SCALLOP DOMES BY NEURAL NETWORKS
This study deals with predicting nonlinear time history deflection of scallop domes subject to earthquake loading employing neural network technique. Scallop domes have alternate ridged and grooves that radiate from the centre. There are two main types of scallop domes, lattice and continuous, which the latticed type of scallop domes is considered in the present paper. Due to the large number o...
متن کامل